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Failure Times in Maintenance Models

by

Wai Chan and Jayaram Sethuraman

Abstract

All systems are subject to failure and must be repaired to be kept in work-

* ing order. The word 'repair' is used here in a broad sense. It can consist of

replacement with a brand new item, or checkups at periodic intervals, or several

other fox.ias of 'minimal' repairs. In this paper, we describe several kinds of

'rpLrs' and maintenance models. After studying some properties of the sto-

chastic process of failure times, we compare different maintenance models by

comparing the expected number of failures in time t.
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1. Introduction.

All systems are subject to failure and must be repaired to be kept in work-

ing order. The word 'repair' is used here in a broad sense. It can consist of

replacement with a brand new item, or checkups at periodic intervals, or several

other forms of 'minimal' repairs. In this paper, we describe several kinds of

'repairs' and study some properties of the stochastic process of failure times

under various maintenance models.

Consider a system consisting of only one unit. This unit is put into use

at time t= 0 and has life distribution F. When it fails, we can perform a

S'effect' repair or a 'minimal' repair. 'Perfect' repair means that a new unit

N. ." U -. u,:,n is is put in the place of the failed unit. A 'G-mini-

nair' means that the failed unit is replaced by a unit with life distribu-

tic- and age ecq, .s to 1-"'f,, ctive age' of the failed unit. More formally, L
let the failure time of the fuiled unit as comnuted from time zero or the last

* .rfect repair, whichever came last, be y. Then the probability that the life

of the G-minimal repaired replacement exceeds x is G(x y)/G(y) for x20. This

definition of minimal repair was rroposed by Ascher (1978) and has been used by

Brown and Proschan (1983).

Brcwn and Proschan (1983) considered the following maintenance model. A

sys-( -(-f-.t. of a single unit starts out with a unit whose life distribu-

t', . ....never a failure occurs, a coin with probability p for heads is

,: i;.d~~xdnt of previous history. If the coin comes up heads a perfect

renair -':rformed. Otherwise an F-minimal repair is performed. Notice that

each pC.;ch * perfect repair is a r :';.,in point for the process of failure

times. [r:,vi and Proschan (1983) obtainwd the distribution of the time between '

• .-X %
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* perfect repairs (which is also the same as the waiting time for the first per-

'" fect repair) and established some of its monotonicity properties in terms of

similar properties of F.

It is easy to see that the distribution of the time between perfect repairs

depends in a simple fashion on the distribution of the number of minimal repairs

before time t in another maintenance model called the Forever Minimal Repair

(F1R) model where only G-minimal repairs are performed (see Theorem 2.1). This

leads to an alternative derivation of Lemma 2.1 of Brown and Proschan (1983).

What are the interesting questions concerning maintenance models? By very

definition, a system can be maintained indefinitely under all repair models, if

the lifetimes of repaired units are unbounded to the right. Some models will

be more expensive to maintain than others. In this paper we will study the

failure tiro processes of some maintenance models and compare the expected num-

ber of failures in t',-;o t, which is roughly related to the cost of maintaining

the system till time t.

A maintenance model where perfect repairs are performed at each failure is

called the Pemove and Replace (RAR) model. The failure times in this model are
- easily stndizd by usin;, :;tandvrd renewal theory. In Section 2 we compare the

expected number of failures in the RAR and F11R models. It is shown that the RAR

model has smaller expected number of failures if the unit life distribution is

* I,1A. On the other hand, the FMR model has a smaller expected number of failures

if the unit life distribution is DFRA. V

In S'ction 3 we consider other maintenance models where two types of mini-

mal repairs are available. These minimal repairs may be chosen at random before

the start of tie process and fixed ever after (one-shot random repair model), or

can be chosen at random at start and alternated thereafter (alternating repair

. .. . . -* .

...............-. .- - -- - -- - -
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model) or can be chosen at random at start and again, independently, at each

failure (completely Tandom repair model). We then compare the expected number

of failures in time t under all these maintenance models. ?N..

2. Maintenance models with only one type of minimal repair.

In this section we consider maintenance models with only one type of mini-

mal repair. Of course, if we do not wish to use minimal repair, we can use per-

f,,ct repair, which is assumed to be always available.

Consider the Remove and Replace (RAR) model in which a failed unit is

repla, c(! with a new unit; that is a perfect repair is performed at each failure.

The lifetimes of all the units are independent and identically distributed with

common distribution function F. Then the number of failures before t, N(t), is

a standar1 5-e, !al prozess. It is well known that the probability generating

fut-ztion 4(t, q) of N(t) is given by

n --

= F q [F n+l(t)- Fn(t) ]

n=l

nn
where Fn denotes the n-fold convolution of F. Furthermore, if f0_ Y(t)dt = u<-,

then the renewal theorem states that

(2.1) N(t) 41 wpl Lt 3

(2.2) r[t I
t 3

.. .. . . . . . . . . . . . .
A -. -
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lie refer to Barlow and Proschan (1975), p. 167 for the proof of these results.

These well known results will be used as yardsticks for later comparisons.

In contrast to the above model consider the Forever Minimal Repair (F!R)

model in which each failed unit is G-minimally repaired. More formally, if

there is a failure at time t, then it is replaced with a working unit with life

distribution G and age t, i.e., with a random life T whose distribution is given

by

P(T>S) G+st) s "PTs=, s O. ."

G(t)

W2 also asstime that the life distribution of the first unit is G. Let N(t) be

the nurber of failures before t. Theorem 2.1 below obtains the probability

generating function c& N(t).

Theorem 2.1. The probability generating function of N(t) is given by

(2.3) t, (t) where p l-q.

Proof.

th
Let X be the time of the n failure and let F be the distribution ofn n _

Xn . Then for n:l,
n

(2.4) P[N(t) n1 F n+l(t) - n (t)

= P(X n < t <-Xn I  -.n1 nl

= nP(X= t Xu)dF n (u)

= ft Grt) dF(u)

nF
0!

S, (uZ
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Define a (t) I and

GF (u)

Then P(N(t) =n] a (t)Gd(t) for nO. Differentiating (2.4) and (2.5) with
n

respect to t, we obtain

dP nCt)
-dF n (t)-dF n -t ()-a n(t)dG(t).

n~l n G(t) n

t tdF C~lu)
Thus a (t=I. il

n+l - u

ta n(u)dG(u)

n

Let A(t, q) = (t) Then

GCOu

A (t, q) a t q I q aG (t)
0 nt

SinfcentaCO, -q) withi hsc ao unique slyionlives b

dGt
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Hence 0(t, q) = qnP[N(t) =n]
n=0

= X qG(t)a n(t)
n 0

-G(t)A(t, q) ,
= G~(t). Ii::

Thus in the FMR model, the expected number of failures before t is given by L

(2.6) E(N(t)) = - (t, q) ql---nGCt).

Using (2.2) and (2.6), we can compare the expected number of failures before

t in the RAR model and FMR model. The expected number of failures before t is

smaller in the RAR model (for large t) if and only if

(2.7) GT(t) -5 e - t /u . [

Let G be an IFRA distribution with mean U. Then --log-G(t) is increasing and
t

cannot lie always below l/Ij oz olhays above 1/',, because this would contradict the

assumption that the mean of G is v. Thus (2.7) is true for all large t and the

expected number of failures before t is smaller in the RAR model than in the

FMR model if G is IFRA. Similarly, if G is DFRA then the expected number of

failures before t is smaller in the FMR model than in the PAR model, for all

large t.

,e can add a slight element of generality to the FIR model by assuming that

the first unit has life distribution F and that G-minimal repairs are performed

at all failures. 1e will call this the Extended Forever Minimal Repair (EFIR)

model. The probability generating function of N*(t), the number of failures

before t in this model is obtained below.

.I.

-*c...-.-
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Corollary 2.2. The probability generating function of N*(t) is given by

ft Gp(t) dF"4 -.'.
*(t, q) F (t) +q0 d-P~ s) "'.

G _P s)

Proof.

Since ¢*(t, q)= P[N*(t) =n]qn
n =0

+t I q nf0tP [N (t -s)-T,- ]dF (s) .

n= 1

=F(t) + qf0 ¢(t - s, q)dF(s),

where (u, q) and N(u) are as given in Theorem 2.1 except that the first unit has

life distribution C with age s, and when a failure occurs at time w, the failed

unit is replaced by a unit with life distribution C and age w+s. From (2.3),

we have

f P(t) F-(tq) F (t) +q dF --'-

If F and G have proportional hazard rates, i.e. -(t) =P(t) for some y>0,

then the above probability generating function becomes

*L. q, -YPyq 1 - F(t) + Fq---P .

Though this is a distribution function in t for all -y >O, it is a convex combi-

nation of T ard 'F'P only for o< yl.

The stochastic processes {N(t), t 0) and {N*(t)> 0} are interesting pro-

cesses in their own right. Th-,ecrcTF 2.1 shows that th'e marginal distribution of

N(t) is Poisson with parareter -;nG(t). The number of failures before time t, r

N(t), in the FR model is exactly the number of record values before time t in a

.~~ ~~~ .



* sequence of i.i.d. random variables with common distribution G. M'ore general

results about N(t) can be foi.nd in the literature for record values. For example,

-ShoTrock (1972) has show,.n that (N(t), t :O} is a non-homogeneous Poisson process.

- Our proof of Theorem 2.1 can be modified to establish the same result.

Wie can interpret the probability generating functions obtained in the F!IR

and EPIR models as the distribution function of the waiting time between two

perfect repairs in another maintenance model due to Brown and Proschan. In the

* Brown and Proschan model, the system starts out with a unit with life distribu-

* tion F. At each failure, a coin with probability p for heads is tossed independ-

ent of previous history. If it is a head, a perfect repair is performed and the *

failed unit is replaced by a unit whose life distribution is F. If the coin

turns up tails, the unit is replaced by a unit with life distribution G and age

t* where t* is the time from the beg.,inning or the previous perfect repair, which-

e~ver came last. In short, when the coin turns up tails, a G-minimal repair is

perfornmed. 'o'e distinguish two models, the Brown-Pioschan (BP) model in which

F =G ind the Extended Brown-Prcschan (EBP) model in which F and G are not equal.r

- In both Ts odls, the epochs of perfect -repair form regeneration points and the

* Process starts over again. Thus it would I-e interesting to obtain the distribu-

tion of the waiting time for the first perfect repair or the time between two

successiv'e perfect repairs. Denote this waitin2- time by U in the BP m~odel and

bY U* in the FBI' ri,'del.

hern2S.(i) P (LT > t) =(t, q) EP (t) .qd~) G (s)
results a ) a be f d in thq i tue o r d v .Cr e

.0
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Proof.

We prove only (i). The proof of (ii) is similar.

Since P(U > t) = P(exactly n failures occurred before
n= 0 t and a G-rinimal repair is performed

at each failure)
.qnp[N(t) n) 

",;n 0

where N(t) is the number of failures before t in the FRI model. From the defi-

nition of 4(t, q), we have

P(U > t) =(t, q). f•

This provides an alternative proof for Lemma 2.1 of Brown and Proschan

(1983).

Brown and Proschan studied the ageing property of the distribution of U in _

terms of those of C. We pive a result below that gives an upperbound for EU*

a'==ing thrat G is N3U or t)IRL.

Theorem 2.4. Let G be IN1. or D.RL. Then under the EBP model,

EU* A-/-v for 0-5p<l
p

whcre u =JF(t)'t and m=f G(t)dt.

Priar.

It follows from Brown and Proschan (1983) that is NBUE and fG-P(t)dt -

(I/p) f G(t)dt for 0 < p 1 . Thus

............................
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.r G(t) dt
.',:GP (u) 0, ,'

<m/p if u>O and 0<pl.

By Theorem 2.3, we have

EU*=fo*(t, q)dt

=,,+qjo ' co So cd o !..t

= + q f0 f' _GP(t) dt/ _Gp ( dFu)

!5 ~I q G_ Ct) dt

f.+Sm. 1l
p

3. Mainterance models with two types of minimal repairs.

We extend the results of the previous section to models where two types of

minimal repairs are available. This could correspond to the practical situation

where repairmen with two types of training are called in to do the repair, or

where repairs are performed with spares from deteriorating stockpiles from two

different manufacturers, and so on.

Ile distinguish three maintenance models in which only minimal repairs are

performed. In the One-shot Random Pepair (OSr) monel, a coin with probability A

for heads is tossed. If it turns up hcads, a unit with life distribution G is
I]

placed into service at time t =0 and only G1-minimal repairs are performed

thereafter. If the coins turns up tails, the distribution G is used in place
2

of G1 in the above.

In the Completely Random Pepair (CRR) nodel,. a coin is tossed as before
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" and depending on whether it turns up heads or tails, the unit put into service

at time t=O0 has life distribution G or G At each new failure, a coin with
1 2'

probability A for heads is tossed independent of previous history. Depending

on whether it turns up heads or tails, a Gl-minimal repair or a G2-minimal repair

is performed.

In the Alternating Repair (AR) model, a coin is tossed as in the previous

models. If it turns up heads, then a unit with life distribution G1 is placed

into service at time t =O. From then on, we perform minimal repairs in alter-

nate order, i.e. G2-minimal repair, Gl-minimal repair, G2 -minimal repair, etc.

If the coin turns up tails, the roles of G and G2 are reversed.

Wie first obtain expressions for the probability generating functions of the

- numbers of failures before t in the above three models.

Theorem 3.1. Let N1(t) be the number of failures before t in the OSR model.

Its probability generating function is given by

"l(t, q)=X (t) + (t), where pfl-q,

and its expected value is

(3.1) ENI(t) = - fX2nGl(t) + XrnG2(t)].

- Proof.

7. This follows immediately from (2.3) and (2.6). f-

For the CRP. model, we first show that the probability generating function

- r.ust satisfy certain differential equations. We assume that G and G2 are

2I

*. . . . . . . .. . . . . . . . . . . .
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absolutely continuous with respective densities g, and g2.

Theorem 3.2. Let N 2(t) be the number of failures before t in the CRR model.

Its probability generating function is given by

*2 (t, q) Z, (t) A(t, cq)+ AG 2(t)B(t, q)

where A(t, q), B(t, q) satisfy

(3.2) E,(t)~- t q) =U2 t 8(t.~ q) q (XA(t, q) g,() B(t 0

for all tO> ,

with initial conditions

A (0, q) B(01 q) 1,
and where A =- A.

* Proof.

As in the proof of Theorem 2.1, we let X be the time of the n thfailure

*and let F be the distribution of X .Thenn n

(3.3) P[N(t) n]= (t)- T (t)*n~l n

(tpX tX =u) dF (u)

0n n

G1(u) E2 (u)

=Xa n(t)G(t M Xb n(t)G 2(t) V'
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where a (t) jtn---,
n 0-

b (t)= for n~n 0-
U2 (u)

and ao (t) bo (t) =1.

Differentiating (3.3) and (3.4) with respect to t, we obtain the identity

-dF (t) +dF Mtn.1 n

- dF (t) _ dF (t) -

1 n

=XG 1 (t) - X a at (t).gG(t) - b tg t
n 1 t Gnt 1 2~~2(

This implies that for n 1l,

a,1 (t) ft n~ d7(u

=0  0 -

G (U) G(U)

and

a (u)dG 1 (u) +rt bn (u)dG 2(u)
b 2 u (t)(=ui

n 0

Ten *(t, q) na(t n B(t) =nb M

- -n. 0. . . . . . . . . . . . . . . .
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Note that a n(0) =b n(0) =0 for n2 1, so that

A(O, q) =B(0, q)=1.

Also A(t, q)=l+q n qnan~l(t)
-, n=Oj

=l~q~ qlf~dF (u)
':" =l~q n t dn+lU)

n 0 G(u) J
+ a (u)dG (u)

+ q qf t n ]

;" ~G ( u •-

by (3.5).

Thus GI(t)Tt A(t, q) =q[XA(t, q)gl(t) +X B(t, q)g2 (t)]. Similarly we have

G2 (t) B(t, q) =q[XA(t, q)g1 (t) + B(t, q)g2(t)]. I ]

Ile are not able to obtain solutions of the linear homogeneous partial dif-

ferential equations given in (3.2) for arbitrary G1 and G2. If G1 and G2 have

proportional hazard rates, i.e.,

(3.6) G1(t) =G(t) and J,2 (t) =G0(t) for some 0<0 O_1,

* then it easy to solve for A(t, q) and B(t, q). The solutions are

A(t, q) =,c'l (t) +- a 2(t)

and

B(t, q) - - -1
"FC;1 () 28 +1

where aI , a2 are the roots of the equation

.-",
"-.'-.>- .-',-- --.'.. -? -.-:.,-.L-'L-.ii-.L-2:.'..i-;-,i-.;'.2'.':-. :-' ' .-.-. -i " -: ,. ...:':'.' -". .-..- ,--2-2.-..-;. .- ':...-.'. -.'- --
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+(a+ q),) (a -+ 1) + aqX8 =0

and O= 1- B is chosen such that

'L -l a 2e

1 2:

Note that aI and a2 are real because

[qX + (1 - e) + q-e] 2 -4qX (1 - 0) |,

"[q -(1- 0)] + (q~e) 2 + 2q7B [qa+ (I - 6)] > 0.

Thus the probability generating function of N2 (t) is

1+
':: €2~~(t, q) =[XS+ Ga_~ 1 t :':-..

22..;+[1+ l 2 -0l] 2+l t1

Ile find that the expected number of failures before t, under the assumption (3.6),

is given by

(3.7) EN2(t) = _nG(t) + - ) "%"'" ;~+ ,o(,+ "Xe)2 [ - ]..'.-"....

We just noted that we were unable to obtain the probability generating func-

ticn of N2 (t) for arbitrary G1 and G2. However we are able to obtain EN (t) for

arbitrary G1 and G2 in Theorem 3.3 below. This Is possible because the identity

* (3.12) (see below) allows us to reduce the differential equations for Al(t) and

Bl(t) which determine EN2(t) (see (3.15) below) and solve fcr them. Let rlr

denote the respective failure rates functions of G and G 2 .

,.: ...
"4.'%

4.•

*I 4 t* - ~ ~ *'* ~ *.**. ~. S. ~.- .* . "* 2
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Theorem 3.3. In the CRR model, we have

(3.8) EN-2n(t) -XnG1 (t) + UnG2(t)]

-t -A -__(~r (v) - r2 (v)

0 GX 1(u)G 2((u)[rI(u) - r2 (u)] jf0 -z dv du.
( I (v)G2 (v)

•. Proof.

By Theorem 3.2, we have

(3.9) *2 (t, q) XG(t)A(t, q) + G
2(t)B(t, q)

where

"A(u, q)dG 1 (u) tB(u, q)dG2 (u)
(3.10) A(t, q) - 1 qA + q(u)B Gl (u) G1 (u) .-

and

B•,q)- t A(u, q)dG l(u)• . . B ~ t , q ) I q X f t. " --
" (u)

2

B(u, q)dG2 (u)

G2(u)

Let Alt)=A(t, 1) and Bl(t) =B(t, 1). Then (3.10) implies that

G- (t)A (t)= G(t)B (t)

,1 2

(3.11)

=XA1(VT(t) TBMF +

Putting q=1 in (3.9), we have

(3.12) ( Gl1t)A (t) XC 2 (t) 1 (t) 1 .

Solving for Al(t) and B1(t) from (3.9) and (3.10), we obtain

::: TiL:F

.................................................
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A-(t)G (t)C 2 (t) XA 1 (t)([G2 (M g(t) -G(tgt) M g (F ),

which implies that

[Adt ) L 1 JiJ(t JJ W(t {(t) + 4r (t) - r (t)]A()

G(t G t 2 (t)

This yields the solution

(t) [ dG (u) 1

G(t M G31 (u)G2  (u)

Similarly

t1t dG Cu)

2 ~ 1 2

To solve for EN (t), we let E(t)= .A(t, q)j 1  and F (t) ~B (t , q)1 1  By

differentiating (3.10) with respect to q and putting q =1, we obtain

A (u)dG (u) B1 (u) dG2 (u)

f utC1 (u Fud 2

G G1 (u) 0 Elm

EFd (u) Tft(u)d F(u)dG()

G (u) 0(()

The last equality follows frm (3.10). Thus,
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(3.13) E, (t)Gl(t) =A'(t)G1 (t) + AE(t)g, (t) + F(t)g2 (t)•

Similarly,

(3.14) F (t)G2(t) = B(t)GCt) + XE(t)gl(t) + F(t)g2(t).

Since [EN 2 (t)] E *2 (t, q)lq= .,

d P- (t)E(t) +Ag (t)F(t)] by (3.9)

=AE (t) If1 (t) + XF't 2 t

-AE(t)g 1 (t) - TF (t) g2 (t)

= XA-(t) t) + -B(t)2 t) by (3.13) and (3.14)

= A (t)gl(t) XBI(t) g2 (t) by (3.11)

we have
I.o

(3.15) EN (t) = X ft A (u)dG (u) T to B1 (u)dG (u).

Substituting the solution of Al(t) and Bl(t), we obtain

EN2 (t) = X t) dGl(u) +Tft 1 - (u)L
G l(U) 2(u) :.r

G G(u) 1
ft fu

GXl "'C..+Xu 1 dG1 (v) dG2 Cu).

G 1u)G 1(v)G(V)

(u)'2
I1-

0'.0" " "- "
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Integrating by parts, we have

EN2 Ct) =-t.nG1 (t) -A Jol dG1 (ul).--

u jdG 2 (u)EN. M6 6G (t) -u)G

(3.16) +Xo g2(u)"iZu".. l  u dG (v)G 1 du.0;' 22(u) ]G 4

92 1 0

Interchanging GI with G and X with X in (3.16), we obtain the following alter-

native expression for EN2(t):

*EN (t) =-InG(t M A ft[1()] dG (u)
2~G 2(0 )

1 A
2(u) j

*G(3.17) 2 ( u )  dG (u)

g 1(u) (u ) dG2 (v) 1-du+ 2--u) - 9 (u du.

LGi(u) G(u IL v)G~+ (v)J

The expression for EN2(t) in (3.8) is obtained from (3.16) and (3.17) by appro-

priate averaging. El

Wle next present analogous results for the AR model. Let N3 (t) be the num-

ber of failures before t in the AR model.

. . . ..
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Lemma 3.4. Consider the conditional distribution of N 3(t) given that a head
turns up on the first toss, which is the same as saying that the first unit has

life distribution G. Its probability generating function is

Gl(t)A(t, q) +G 2(t)B(t, q),

where A(t, q) and B(t, q) satisfy

?Tl(t)- A(t, q) =qB(t, q)g2 (t),

aG2(t) B(t, q) =qA(t, q)gl(t),..."?:

2 with initial conditions

A(0, q)-l, B(0, q) 0.

The expected value of N3 (t) given that the first unit has life distribution G is

~~dG 2 (v) }:::

-inG (t) f G E,(u)G2 (u)[r1(u) -rduu)l1.f. 22 }-du-
Proof.

The proof is omitted because it is similar to the proof of Theorems 3.2

and 3.3. 0

The expected value of N3 (t) follows immediately from Lemma 3.4. We state
this result without giving the proof.

i,
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- Theorem 3.5. In the AR model,

EN 3 (t) = qxtnG 2(t) ATnG I(t)]

p(3.18) 0 2 1 2(u)iI{0IX-3'

dG (v)

fu(vG~v I du.
* We may now compare the expected nunber of failures among the three models

- for the case where A A=1/2. We further assume that the failure rate functions

j satisfy

r (t) r (t) for all t 2!O.

Then it follows from (3.1), (3.8) and (3.18) that the expected number of failures

tefore t is the largest in the OSR model. To compare the AR zodel and the CRR

model, it is clear from (3.8) and (3.18) that the expected number of failures

* before t is smaller in the AR model than in the CRR model if and only if

1/2 ftG1 (u) G '(u)(r (u) - r2 (){~~ 2v dv du
1(v)G (v)

k (3.19)

Pt fu r 1(v) - r 2(v) 1
j f0 G (u) G (u) r (u) - r (u) ){ - dv j'du.

We were not able to prove (3.19) for all t !O. However, for small values of t,

namely when G I(t)G 2(t) 1/4, it is straight forward to show that (3.19) is true

for arbitrary G I and C 2. Therefore, if the process is to be run for a short

* time, AR model is preferable to the CRR model. Under the proportional hazard
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assumption, namely (3.6), the expected number of failures before t is smaller

in the AR model than in the CRR model for all t, since (3.19) can be reduced to

the inequality

112[ -(+0/

which holds for all t O.

The BP model cf Section 2 can be extended to include perfect repair and

two kinds of minimal repairs. Once again epoch of perfect repairs form regen-

eration points. The tail of the distribution of the waiting time between per-

fect repairs is again the probability generating function of the number of

failures in the same repair model when perfect repairs are excluded.

Repair models with k minimal repairs where k 2 3 can be obtained by straight

forward extensions. Differential equations for the various quantities involved S
similar to those found in Theorem 3.2 are easily obtained. It turns out that

these linear homogeneous differential equations are not easy to solve even in

the proportional hazard case.
L

... .. . . . . .. . . . . . . .
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